1 /** 2 * Copyright: Copyright (c) 2011-2016 Jacob Carlborg. All rights reserved. 3 * Authors: Jacob Carlborg, Joakim Brännström (joakim.brannstrom dottli gmx.com) 4 * Version: 1.1+ 5 * License: $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost Software License 1.0) 6 * History: 7 * 1.0 initial release. 2012-01-29 $(BR) 8 * Jacob Carlborg 9 * 10 * 1.1+ additional features missing compared to cindex.py. 2015-03-07 $(BR) 11 * Joakim Brännström 12 * 13 * TODO split the specific C++ stuff to a dedicated cursor. 14 * TODO implement cxxMangling. 15 */ 16 module clang.Cursor; 17 18 import clang.c.Index; 19 20 import clang.Eval; 21 import clang.File; 22 import clang.SourceLocation; 23 import clang.SourceRange; 24 import clang.Token; 25 import clang.TranslationUnit; 26 import clang.Type; 27 import clang.Util; 28 import clang.Visitor; 29 30 /** The Cursor class represents a reference to an element within the AST. It 31 * acts as a kind of iterator. 32 */ 33 @safe struct Cursor { 34 mixin CX; 35 36 // for example primitive types are predefined 37 private static const CXCursorKind[string] predefined; 38 39 /// Retrieve the NULL cursor, which represents no entity. 40 @property static Cursor empty() @trusted { 41 auto r = clang_getNullCursor(); 42 return Cursor(r); 43 } 44 45 /** Retrieve a Unified Symbol Resolution (USR) for the entity referenced by 46 * the given cursor. 47 * 48 * A Unified Symbol Resolution (USR) is a string that identifies a 49 * particular entity (function, class, variable, etc.) within a program. 50 * USRs can be compared across translation units to determine, e.g., when 51 * references in one translation refer to an entity defined in another 52 * translation unit. 53 */ 54 @property string usr() const @trusted { 55 return toD(clang_getCursorUSR(cx)); 56 } 57 58 /// Return: Retrieve a name for the entity referenced by this cursor. 59 @property string spelling() const @trusted { 60 return toD(clang_getCursorSpelling(cx)); 61 } 62 63 /** 64 * Returns the storage class for a function or variable declaration. 65 * 66 * If the passed in Cursor is not a function or variable declaration, 67 * CX_SC_Invalid is returned else the storage class. 68 */ 69 @property CX_StorageClass storageClass() const @trusted { 70 return clang_Cursor_getStorageClass(cx); 71 } 72 73 /** Determine the linkage of the entity referred to by a given cursor. 74 * 75 * This value indicates that no linkage information is available for a 76 * provided CXCursor. 77 * CXLinkage_Invalid, 78 * 79 * This is the linkage for variables, parameters, and so on that have 80 * automatic storage. This covers normal (non-extern) local variables. 81 * CXLinkage_NoLinkage, 82 * 83 * This is the linkage for static variables and static functions. 84 * CXLinkage_Internal, 85 * 86 * This is the linkage for entities with external linkage that live 87 * in C++ anonymous namespaces. 88 * CXLinkage_UniqueExternal, 89 * 90 * This is the linkage for entities with true, external linkage. 91 * CXLinkage_External 92 */ 93 @property CXLinkageKind linkage() const @trusted { 94 return clang_getCursorLinkage(cx); 95 } 96 97 /** Return the display name for the entity referenced by this cursor. 98 * 99 * The display name contains extra information that helps identify the 100 * cursor, such as the parameters of a function or template or the 101 * arguments of a class template specialization. 102 * 103 * If it is NOT a declaration then the return value is the same as 104 * spelling. 105 */ 106 @property string displayName() const @trusted { 107 return toD(clang_getCursorDisplayName(cx)); 108 } 109 110 /** Return the cursor kind of the template specialization that would be 111 * generated when instantiating the template with this cursor. 112 */ 113 @property CXCursorKind templateKind() const @trusted { 114 return clang_getTemplateCursorKind(cx); 115 } 116 117 /** Return the cursor that represents the template that given cursor 118 * specializes (or is instantiated) from. 119 * 120 * It will only work for a cursor that represent a specialization or 121 * insantiation of a template. Otherwise, NULL cursor is returned. 122 */ 123 @property CXCursor templateCursor() const @trusted { 124 return clang_getSpecializedCursorTemplate(cx); 125 } 126 127 /** Retrieve the string representing the mangled name of the cursor. 128 * 129 * Only useful for cursors that are NOT declarations. 130 */ 131 @property string mangling() const @trusted { 132 return toD(clang_Cursor_getMangling(cx)); 133 } 134 135 /** 136 * \brief Retrieve the CXStrings representing the mangled symbols of the C++ 137 * constructor or destructor at the cursor. 138 */ 139 //@property string[] cxxMangling() const @trusted { 140 // CXStringSet *clang_Cursor_getCXXManglings(CXCursor); 141 //} 142 143 /// Return: the kind of this cursor. 144 @property CXCursorKind kind() const @trusted { 145 return clang_getCursorKind(cx); 146 } 147 148 /** Retrieve the physical location of the source constructor referenced by 149 * the given cursor. 150 * 151 * The location of a declaration is typically the location of the name of 152 * that declaration, where the name of that declaration would occur if it 153 * is unnamed, or some keyword that introduces that particular declaration. 154 * The location of a reference is where that reference occurs within the 155 * source code. 156 */ 157 @property SourceLocation location() const @trusted { 158 return SourceLocation(clang_getCursorLocation(cx)); 159 } 160 161 /** Type (if any) of the entity pointed at by the cursor. 162 * 163 * The following isDeclaration cursors are handled: 164 * - TypeDecl 165 * - DeclaratorDecl (if source info exist) 166 * 167 * isReference cursors may be automatically dereferenced if they are of the 168 * following kind: 169 * - TypeRef 170 * - CXXBaseSpecifier 171 * - MemberRef 172 * - VariableRef 173 * The following are NOT handled: 174 * - TemplateRef 175 * - NamespaceRef 176 * - OverloadedDeclRef 177 */ 178 @property Type type() @trusted const { 179 auto r = clang_getCursorType(cx); 180 return Type(this, r); 181 } 182 183 /** Return the underlying type of a typedef declaration. 184 * 185 * If the current cursor is not a typedef an empty type is returned. 186 * 187 * Returns: the Type the typedef cursor is a declaration for. 188 */ 189 @property Type typedefUnderlyingType() @trusted const { 190 auto r = clang_getTypedefDeclUnderlyingType(cx); 191 return Type(this, r); 192 } 193 194 /** If the cursor is a reference to a declaration or a declaration of 195 * some entity, return a cursor that points to the definition of that 196 * entity. 197 */ 198 @property Cursor definition() const @trusted { 199 auto r = clang_getCursorDefinition(cx); 200 return Cursor(r); 201 } 202 203 /** Determine the semantic parent of the given cursor. 204 * 205 * The semantic parent of a cursor is the cursor that semantically contains 206 * the given cursor. For many declarations, the lexical and semantic 207 * parents are equivalent (the lexical parent is returned by 208 * clang_getCursorLexicalParent()). They diverge when declarations or 209 * definitions are provided out-of-line. For example: 210 * 211 * --- 212 * class C { 213 * void f(); 214 * } 215 * 216 * void C::f() { } 217 * --- 218 * 219 * In the out-of-line definition of C::f, the semantic parent is the the 220 * class C, of which this function is a member. The lexical parent is the 221 * place where the declaration actually occurs in the source code; in this 222 * case, the definition occurs in the translation unit. In general, the 223 * lexical parent for a given entity can change without affecting the 224 * semantics of the program, and the lexical parent of different 225 * declarations of the same entity may be different. Changing the semantic 226 * parent of a declaration, on the other hand, can have a major impact on 227 * semantics, and redeclarations of a particular entity should all have the 228 * same semantic context. 229 * 230 * In the example above, both declarations of C::f have C as their semantic 231 * context, while the lexical context of the first C::f is C and the 232 * lexical context of the second C::f is the translation unit. 233 * 234 * For global declarations, the semantic parent is the translation unit. 235 */ 236 @property Cursor semanticParent() const @trusted { 237 auto r = clang_getCursorSemanticParent(cx); 238 return Cursor(r); 239 } 240 241 /** Determine the lexical parent of the given cursor. 242 * 243 * The lexical parent of a cursor is the cursor in which the given cursor 244 * was actually written. For many declarations, the lexical and semantic 245 * parents are equivalent (the semantic parent is returned by 246 * clang_getCursorSemanticParent()). They diverge when declarations or 247 * definitions are provided out-of-line. For example: 248 * 249 * --- 250 * class C { 251 * void f(); 252 * } 253 * 254 * void C::f() { } 255 * --- 256 * 257 * In the out-of-line definition of C::f, the semantic parent is the the 258 * class C, of which this function is a member. The lexical parent is the 259 * place where the declaration actually occurs in the source code; in this 260 * case, the definition occurs in the translation unit. In general, the 261 * lexical parent for a given entity can change without affecting the 262 * semantics of the program, and the lexical parent of different 263 * declarations of the same entity may be different. Changing the semantic 264 * parent of a declaration, on the other hand, can have a major impact on 265 * semantics, and redeclarations of a particular entity should all have the 266 * same semantic context. 267 * 268 * In the example above, both declarations of C::f have C as their semantic 269 * context, while the lexical context of the first C::f is C and the 270 * lexical context of the second \c C::f is the translation unit. 271 * 272 * For declarations written in the global scope, the lexical parent is 273 * the translation unit. 274 */ 275 @property Cursor lexicalParent() const @trusted { 276 auto r = clang_getCursorLexicalParent(cx); 277 return Cursor(r); 278 } 279 280 /** For a cursor that is a reference, retrieve a cursor representing the 281 * entity that it references. 282 * 283 * Reference cursors refer to other entities in the AST. For example, an 284 * Objective-C superclass reference cursor refers to an Objective-C class. 285 * This function produces the cursor for the Objective-C class from the 286 * cursor for the superclass reference. If the input cursor is a 287 * declaration or definition, it returns that declaration or definition 288 * unchanged. Otherwise, returns the NULL cursor. 289 */ 290 @property Cursor referenced() const @trusted { 291 auto r = clang_getCursorReferenced(cx); 292 return Cursor(r); 293 } 294 295 @property DeclarationVisitor declarations() const @trusted { 296 return DeclarationVisitor(this); 297 } 298 299 /** Retrieve the physical extent of the source construct referenced by the 300 * given cursor. 301 * 302 * The extent of a cursor starts with the file/line/column pointing at the 303 * first character within the source construct that the cursor refers to 304 * and ends with the last character withinin that source construct. For a 305 * declaration, the extent covers the declaration itself. For a reference, 306 * the extent covers the location of the reference (e.g., where the 307 * referenced entity was actually used). 308 */ 309 @property SourceRange extent() const @trusted { 310 auto r = clang_getCursorExtent(cx); 311 return SourceRange(r); 312 } 313 314 /** If cursor is a statement declaration tries to evaluate the statement 315 * and if its variable, tries to evaluate its initializer, into its 316 * corresponding type. 317 */ 318 Eval eval() const @trusted { 319 return Eval(clang_Cursor_Evaluate(cx)); 320 } 321 322 /** Retrieve the canonical cursor corresponding to the given cursor. 323 * 324 * In the C family of languages, many kinds of entities can be declared 325 * several times within a single translation unit. For example, a structure 326 * type can be forward-declared (possibly multiple times) and later 327 * defined: 328 * 329 * --- 330 * struct X; 331 * struct X; 332 * struct X { 333 * int member; 334 * } 335 * --- 336 * 337 * The declarations and the definition of X are represented by three 338 * different cursors, all of which are declarations of the same underlying 339 * entity. One of these cursor is considered the "canonical" cursor, which 340 * is effectively the representative for the underlying entity. One can 341 * determine if two cursors are declarations of the same underlying entity 342 * by comparing their canonical cursors. 343 * 344 * Return: The canonical cursor for the entity referred to by the given cursor. 345 */ 346 @property Cursor canonical() @trusted const { 347 auto r = clang_getCanonicalCursor(cx); 348 return Cursor(r); 349 } 350 351 /// Determine the "language" of the entity referred to by a given cursor. 352 @property CXLanguageKind language() const @trusted { 353 return clang_getCursorLanguage(cx); 354 } 355 356 /// Returns: the translation unit that a cursor originated from. 357 @property TranslationUnit translationUnit() const @trusted { 358 return TranslationUnit(clang_Cursor_getTranslationUnit(cx)); 359 } 360 361 /** Obtain Token instances formulating that compose this Cursor. 362 * 363 * This is a generator for Token instances. It returns all tokens which 364 * occupy the extent this cursor occupies. 365 * 366 * Trusted: the API usage follows the LLVM manual. The potential problem 367 * would be if clang_tokenize write back invalid addresses. 368 * 369 * Returns: A range over the tokens. 370 */ 371 @property auto tokens() const @trusted { 372 import std.algorithm.mutation : stripRight; 373 374 CXToken* tokens = null; 375 uint numTokens = 0; 376 clang_tokenize(translationUnit.cx, extent.cx, &tokens, &numTokens); 377 auto result = TokenRange(translationUnit, tokens, numTokens); 378 379 // For some reason libclang returns some tokens out of cursors extent.cursor 380 return result.stripRight!(token => !intersects(extent, token.extent)); 381 } 382 383 @property ObjcCursor objc() const { 384 return ObjcCursor(this); 385 } 386 387 @property FunctionCursor func() const { 388 return FunctionCursor(this); 389 } 390 391 @property EnumCursor enum_() const { 392 return EnumCursor(this); 393 } 394 395 @property AccessCursor access() const { 396 return AccessCursor(this); 397 } 398 399 @property IncludeCursor include() const { 400 return IncludeCursor(this); 401 } 402 403 @property Visitor all() const { 404 return Visitor(this); 405 } 406 407 @property InOrderVisitor allInOrder() const { 408 return InOrderVisitor(this); 409 } 410 411 private Cursor[] childrenImpl(T)(bool ignorePredefined) const { 412 import std.array : appender; 413 414 Cursor[] result; 415 auto app = appender(result); 416 417 if (ignorePredefined && isTranslationUnit) { 418 foreach (cursor, _; T(this)) { 419 if (!cursor.isPredefined) 420 app.put(cursor); 421 } 422 } else { 423 foreach (cursor, _; T(this)) 424 app.put(cursor); 425 } 426 427 return app.data; 428 } 429 430 /** Array of all children of the cursor. 431 * 432 * Params: 433 * ignorePredefined = ignore cursors for primitive types. 434 */ 435 Cursor[] children(bool ignorePredefined = false) const { 436 return childrenImpl!Visitor(ignorePredefined); 437 } 438 439 Cursor[] childrenInOrder(bool ignorePredefined = false) const { 440 return childrenImpl!InOrderVisitor(ignorePredefined); 441 } 442 443 /// Determine whether two cursors are equivalent. 444 equals_t opEquals(const ref Cursor cursor) const @trusted { 445 return clang_equalCursors(cast(CXCursor) cursor.cx, cast(CXCursor) cx) != 0; 446 } 447 448 /// Compute a hash value for the given cursor. 449 size_t toHash() const nothrow @trusted { 450 //TODO i'm not sure this is a good solution... investigate. 451 try { 452 return clang_hashCursor(cast(CXCursor) cx); 453 } catch (Exception ex) { 454 return 0; 455 } 456 } 457 458 /// Determine whether the given cursor has any attributes. 459 @property bool hasAttributes() const @trusted { 460 return clang_Cursor_hasAttrs(cx) != 0; 461 } 462 463 /// Determine whether the given cursor kind represents a declaration. 464 @property bool isDeclaration() const @trusted { 465 return clang_isDeclaration(cx.kind) != 0; 466 } 467 468 /** Determine whether the given cursor kind represents a simple 469 * reference. 470 * 471 * Note that other kinds of cursors (such as expressions) can also refer to 472 * other cursors. Use clang_getCursorReferenced() to determine whether a 473 * particular cursor refers to another entity. 474 */ 475 @property bool isReference() const @trusted { 476 return clang_isReference(cx.kind) != 0; 477 } 478 479 /// Determine whether the given cursor kind represents an expression. 480 @property bool isExpression() const @trusted { 481 return clang_isExpression(cx.kind) != 0; 482 } 483 484 /// Determine whether the given cursor kind represents a statement. 485 @property bool isStatement() const @trusted { 486 return clang_isStatement(cx.kind) != 0; 487 } 488 489 /** Determine whether the given cursor represents an anonymous record 490 * declaration. 491 * 492 * The cursor must be a declaration and either a struct or union. 493 * 494 * Determines whether this field is a representative for an anonymous 495 * struct or union. Such fields are unnamed and are implicitly generated by 496 * the implementation to store the data for the anonymous union or struct. 497 * 498 * If the following is declared inside a struct. 499 * 500 * Example: 501 * --- 502 * union { 503 * int x; 504 * char y; 505 * }; 506 * --- 507 */ 508 @property bool isAnonymous() const @trusted { 509 return clang_Cursor_isAnonymous(cx) != 0; 510 } 511 512 /// Determine whether the given cursor kind represents an attribute. 513 @property bool isAttribute() const @trusted { 514 return clang_isAttribute(cx.kind) != 0; 515 } 516 517 int bitFieldWidth() const @trusted { 518 return clang_getFieldDeclBitWidth(cast(CXCursor) cx); 519 } 520 521 bool isBitField() const @trusted { 522 return clang_Cursor_isBitField(cast(CXCursor) cx) != 0; 523 } 524 525 /// Determine whether the given cursor kind represents an invalid cursor. 526 @property bool isValid() const @trusted { 527 // note that it checks for invalidity of the cursor, thus the inverse 528 // is the return value. 529 return !clang_isInvalid(cx.kind); 530 } 531 532 /// Determine whether the given cursor kind represents a translation unit. 533 @property bool isTranslationUnit() const @trusted { 534 return clang_isTranslationUnit(cx.kind) != 0; 535 } 536 537 /** Determine whether the given cursor represents a preprocessing 538 * element, such as a preprocessor directive or macro instantiation. 539 */ 540 @property bool isPreprocessing() const @trusted { 541 return clang_isPreprocessing(cx.kind) != 0; 542 543 // If clang_isPreprocessing isn't working out this is the 544 // implementation from DStep. 545 546 //CXCursorKind kind = clang_getCursorKind(cx); 547 //return CXCursorKind.firstPreprocessing <= kind && 548 // kind <= CXCursorKind.lastPreprocessing; 549 } 550 551 /** Determine whether the given cursor represents a currently unexposed 552 * piece of the AST (e.g., CXCursor_UnexposedStmt). 553 */ 554 @property bool isUnexposed() const @trusted { 555 return clang_isUnexposed(cx.kind) != 0; 556 } 557 558 /// Return: if the underlying type is an enum. 559 @property bool isUnderlyingTypeEnum() const @trusted { 560 auto underlying = typedefUnderlyingType; 561 if (!underlying.isValid) { 562 return false; 563 } 564 565 auto decl = underlying.declaration; 566 if (!decl.isValid) { 567 return false; 568 } 569 570 return decl.type.isEnum; 571 } 572 573 /// Return: if cursor is null/empty. 574 @property bool isEmpty() const @trusted { 575 return clang_Cursor_isNull(cx) != 0; 576 } 577 578 /** Returns true if the declaration pointed at by the cursor is also a 579 * definition of that entity. 580 */ 581 bool isDefinition() const @trusted { 582 return clang_isCursorDefinition(cast(CXCursor) cx) != 0; 583 } 584 585 /// Returns: if the base class specified by the cursor with kind CX_CXXBaseSpecifier is virtual. 586 @property bool isVirtualBase() const @trusted { 587 return clang_isVirtualBase(cx) != 0; 588 } 589 590 bool isPredefined() const @trusted { 591 auto xkind = usr in predefined; 592 return xkind !is null && *xkind == kind; 593 } 594 595 /** Determine whether a CXCursor that is a macro, is function like. 596 */ 597 bool isMacroFunctionLike() const @trusted { 598 return clang_Cursor_isMacroFunctionLike(cx) != 0; 599 } 600 601 /** Determine whether a CXCursor that is a macro, is a builtin one. 602 */ 603 bool isMacroBuiltin() const @trusted { 604 return clang_Cursor_isMacroBuiltin(cx) != 0; 605 } 606 607 /** Determine whether a CXCursor that is a function declaration, is an 608 * inline declaration. 609 */ 610 bool isFunctionInlined() const @trusted { 611 return clang_Cursor_isFunctionInlined(cx) != 0; 612 } 613 614 /// Determine if a C++ constructor is a converting constructor. 615 bool isConvertingConstructor() const @trusted { 616 return clang_CXXConstructor_isConvertingConstructor(cx) != 0; 617 } 618 619 /// Determine if a C++ constructor is a copy constructor. 620 bool isCopyConstructor() const @trusted { 621 return clang_CXXConstructor_isCopyConstructor(cx) != 0; 622 } 623 624 /// Determine if a C++ constructor is the default constructor. 625 bool isDefaultConstructor() const @trusted { 626 return clang_CXXConstructor_isDefaultConstructor(cx) != 0; 627 } 628 629 /// Determine if a C++ constructor is a move constructor. 630 bool isMoveConstructor() const @trusted { 631 return clang_CXXConstructor_isMoveConstructor(cx) != 0; 632 } 633 634 /// Determine if a C++ field is declared 'mutable'. 635 bool isMutable() const @trusted { 636 return clang_CXXField_isMutable(cx) != 0; 637 } 638 639 /// Determine if a C++ method is declared '= default'. 640 bool isDefaulted() const @trusted { 641 return clang_CXXMethod_isDefaulted(cx) != 0; 642 } 643 644 /// Determine if a C++ member function or member function template is pure virtual. 645 bool isPureVirtual() @trusted { 646 return clang_CXXMethod_isPureVirtual(cx) != 0; 647 } 648 649 /** Describe the visibility of the entity referred to by a cursor. 650 * 651 * Note: This is linker visibility. 652 * 653 * This returns the default visibility if not explicitly specified by 654 * a visibility attribute. The default visibility may be changed by 655 * commandline arguments. 656 * 657 * Params: 658 * cursor The cursor to query. 659 * 660 * Returns: The visibility of the cursor. 661 */ 662 CXVisibilityKind visibility() const @trusted { 663 return clang_getCursorVisibility(cx); 664 } 665 } 666 667 struct ObjcCursor { 668 Cursor cursor; 669 alias cursor this; 670 671 @property ObjCInstanceMethodVisitor instanceMethods() { 672 return ObjCInstanceMethodVisitor(cursor); 673 } 674 675 @property ObjCClassMethodVisitor classMethods() { 676 return ObjCClassMethodVisitor(cursor); 677 } 678 679 @property ObjCPropertyVisitor properties() { 680 return ObjCPropertyVisitor(cursor); 681 } 682 683 @property Cursor superClass() { 684 foreach (cursor, parent; TypedVisitor!(CXCursorKind.objCSuperClassRef)(cursor)) 685 return cursor; 686 687 return Cursor.empty(); 688 } 689 690 @property ObjCProtocolVisitor protocols() { 691 return ObjCProtocolVisitor(cursor); 692 } 693 694 @property Cursor category() { 695 assert(cursor.kind == CXCursorKind.objCCategoryDecl); 696 697 foreach (c, _; TypedVisitor!(CXCursorKind.objCClassRef)(cursor)) 698 return c; 699 700 assert(0, "This cursor does not have a class reference."); 701 } 702 } 703 704 struct FunctionCursor { 705 Cursor cursor; 706 alias cursor this; 707 708 /// Return: Retrieve the Type of the result for this Cursor. 709 @property Type resultType() @trusted { 710 auto r = clang_getCursorResultType(cx); 711 return Type(cursor, r); 712 } 713 714 @property ParamVisitor parameters() { 715 return ParamVisitor(cursor); 716 } 717 718 /** Determine if a C++ member function or member function template is 719 * pure virtual. 720 */ 721 @property bool isPureVirtual() @trusted { 722 return clang_CXXMethod_isPureVirtual(cx) != 0; 723 } 724 725 /** Returns: True if the cursor refers to a C++ member function or member 726 * function template that is declared 'static'. 727 */ 728 @property bool isStatic() @trusted { 729 return clang_CXXMethod_isStatic(cx) != 0; 730 } 731 732 /** Determine if a C++ member function or member function template is 733 * explicitly declared 'virtual' or if it overrides a virtual method from 734 * one of the base classes. 735 */ 736 @property bool isVirtual() @trusted { 737 return clang_CXXMethod_isVirtual(cx) != 0; 738 } 739 740 /** Determine if a C++ member function or member function template is 741 * declared 'const'. 742 */ 743 @property bool isConst() @trusted { 744 return clang_CXXMethod_isConst(cx) != 0; 745 } 746 747 /** Given a cursor pointing to a C++ method call or an Objective-C 748 * message, returns non-zero if the method/message is "dynamic", meaning: 749 * 750 * For a C++ method: the call is virtual. 751 * For an Objective-C message: the receiver is an object instance, not 'super' 752 * or a specific class. 753 * 754 * If the method/message is "static" or the cursor does not point to a 755 * method/message, it will return zero. 756 */ 757 @property bool isDynamicCall() @trusted { 758 return clang_Cursor_isDynamicCall(cx) != 0; 759 } 760 } 761 762 struct AccessCursor { 763 Cursor cursor; 764 alias cursor this; 765 766 /** Returns the access control level for the C++ base specifier represented 767 * by a cursor with kind CXCursor_CXXBaseSpecifier or 768 * CXCursor_AccessSpecifier. 769 */ 770 @property auto accessSpecifier() @trusted { 771 return clang_getCXXAccessSpecifier(cx); 772 } 773 } 774 775 struct ParamCursor { 776 Cursor cursor; 777 alias cursor this; 778 } 779 780 struct IncludeCursor { 781 Cursor cursor; 782 alias cursor this; 783 784 /** Retrieve the file that is included by the given inclusion directive 785 * cursor. 786 */ 787 @property auto file() @trusted { 788 return File(clang_getIncludedFile(cx)); 789 } 790 } 791 792 struct EnumCursor { 793 import std.conv : to; 794 795 Cursor cursor; 796 alias cursor this; 797 798 @property string value() @safe { 799 import std.conv : to; 800 801 return to!string(signedValue); 802 } 803 804 /** Retrieve the integer type of an enum declaration. 805 * 806 * If the cursor does not reference an enum declaration, an invalid type is 807 * returned. 808 */ 809 @property Type type() @trusted { 810 auto r = clang_getEnumDeclIntegerType(cx); 811 return Type(cursor, r); 812 } 813 814 /** Retrieve the integer value of an enum constant declaration as a signed 815 * long. 816 * 817 * If the cursor does not reference an enum constant declaration, LLONG_MIN 818 * is returned. Since this is also potentially a valid constant value, the 819 * kind of the cursor must be verified before calling this function. 820 */ 821 @property long signedValue() @trusted { 822 return clang_getEnumConstantDeclValue(cx); 823 } 824 825 /** Retrieve the integer value of an enum constant declaration as an 826 * unsigned long. 827 * 828 * If the cursor does not reference an enum constant declaration, 829 * ULLONG_MAX is returned. Since this is also potentially a valid constant 830 * value, the kind of the cursor must be verified before calling this 831 * function. 832 */ 833 @property ulong unsignedValue() @trusted { 834 return clang_getEnumConstantDeclUnsignedValue(cx); 835 } 836 837 /// Return: if the type of the enum is signed. 838 @property bool isSigned() const @trusted { 839 Type t; 840 841 if (isUnderlyingTypeEnum) { 842 t = typedefUnderlyingType.declaration.enum_.type; 843 } else { 844 t = Type(cursor, clang_getCursorType(cx)); 845 } 846 847 return t.isSigned; 848 } 849 } 850 851 import std.array : appender, Appender; 852 853 string dump(ref const(Cursor) c) @trusted { 854 import std.conv : to; 855 import std..string; 856 857 static string stripPrefix(string x) { 858 immutable string prefix = "CXCursor_"; 859 immutable size_t prefixSize = prefix.length; 860 return x.startsWith(prefix) ? x[prefixSize .. $] : x; 861 } 862 863 static string prettyTokens(ref const(Cursor) c, size_t limit = 5) { 864 import std.algorithm.comparison : min; 865 866 TokenRange tokens = c.tokens; 867 868 string prettyToken(Token token) { 869 immutable string prefix = "CXToken_"; 870 immutable size_t prefixSize = prefix.length; 871 auto x = to!string(token.kind); 872 return "%s \"%s\"".format(x.startsWith(prefix) ? x[prefixSize .. $] : x, token.spelling); 873 } 874 875 auto result = appender!string("["); 876 877 if (tokens.length != 0) { 878 result.put(prettyToken(tokens[0])); 879 880 foreach (Token token; c.tokens[1 .. min($, limit)]) { 881 result.put(", "); 882 result.put(prettyToken(token)); 883 } 884 } 885 886 if (tokens.length > limit) 887 result.put(", ..]"); 888 else 889 result.put("]"); 890 891 return result.data; 892 } 893 894 auto text = "%s \"%s\" [%d:%d..%d:%d] %s %s".format(stripPrefix(to!string(c.kind)), 895 c.spelling, c.extent.start.line, c.extent.start.column, 896 c.extent.end.line, c.extent.end.column, prettyTokens(c), c.usr); 897 898 return text; 899 } 900 901 void dumpAST(ref const(Cursor) c, ref Appender!string result, size_t indent, File* file) @trusted { 902 import std.ascii : newline; 903 import std.format; 904 import std.array : replicate; 905 906 immutable size_t step = 4; 907 908 auto text = dump(c); 909 910 result.put(" ".replicate(indent)); 911 result.put(text); 912 result.put(newline); 913 914 if (file) { 915 foreach (cursor, _; c.all) { 916 if (!cursor.isPredefined() && cursor.location.file == *file) 917 dumpAST(cursor, result, indent + step); 918 } 919 } else { 920 foreach (cursor, _; c.all) { 921 if (!cursor.isPredefined()) 922 cursor.dumpAST(result, indent + step); 923 } 924 } 925 } 926 927 void dumpAST(ref const(Cursor) c, ref Appender!string result, size_t indent) @safe { 928 dumpAST(c, result, indent, null); 929 }